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A Construction of event study data

In this section we describe the procedure we employ to go from an unbalanced panel

of data over T years to an event study format at the spell level, with earnings before

and after a move for movers, and one earning per spell for stayers.

1. Original data: The raw data across countries contains the variables (worker

ID, firm ID, year, log earnings, spell length information). A unique row of data is

defined by a (worker ID, employer ID, year) triplet. The spell length information

has a different level of precision in different countries; for example, in Sweden

the data has monthly spell information, the US has no spell information, and

Italy has the number of days worked.

2. Select largest earning employer: As is common in the literature, in the

event that a worker receives earnings from multiple firms within a given year,

we start by selecting the (employer ID) within each (worker ID, year) associated

with the highest annual earnings.

3. Construct log-earnings measures: We construct an earnings measure as

the reported yearly earnings divided by the reported spell length. In the US,

this does not change the measure in any way since the reported spell length is

the same for all spells. In other countries we get a measure of monthly-earnings

or daily-earnings respectively.

4. Residualize log-earnings measures: We residualize log earnings using OLS

regression on calendar year indicators and a third-order polynomial in age.

Following Card et al. (2018), the age profile is restricted to be flat at age 40.

5. Collapse years into spells: We assign a unique (spell ID) to each time-

consecutive sequence of (worker ID, employer ID) pairs. We collapse the data

by taking the mean of the residualized log-earnings within each spell ID. The

resulting data has variables (worker ID, employer ID, spell ID, begin year of

spell, end year of spell, log-earnings). A unique row of data is defined by a

(worker ID, spell ID) pair, or alternatively, a unique (worker ID, begin year of

spell) pair.
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6. Extract stayer spells and mover spell pairs: We collect all workers with

only one spell in a dataset of stayers with (worker ID, employer ID, log-earnings,

begin year of spell, end year of spell). Next, we collect all pairs of consecutive

spells into a movers event-study dataset where the variables are (worker ID,

employer ID 1, employer ID 2, log-earnings 1, log-earnings 2). Employer ID 1

and employer ID 2 are the employer identifiers at two consecutive spells for a

given worker. These employers ID’s are different by construction. Log-earnings

1 is the mean log-earnings at employer ID 1, before the job change, and log-

earnings 2 is the mean log-earnings at the second employer. Employer ID 1 and

employer ID 2 are defined in chronological order based on spell begin year.

7. Weighting used in variance decompositions: We compute the variance

decompositions weighted by person-event as constructed in the previous step.

This means that each move is counted once and each stayer is counted once.

Given that in most of our samples individuals rarely have more than one move,

this is almost identical to weighting by individuals.

B Estimation and computation

In what follows we describe the approach when working with an event-study data

format. This means that each worker i is either a stayer with one log-earnings (at the

only employer), or he is a mover with at most two log-earnings (one at the employer

before the move, and one at a different employer after the move). An advantage of

this data structure, relative to other panel data formats, is that it does not require the

researcher to make assumptions about serial correlation within job spells. Given this

data structure, we next describe fixed-effects and random-effects methods in turn.

B.1 Fixed-effects methods

Estimation of FE-HO. We follow Andrews et al. (2008). The first step in the

estimation procedure is to extract the variance σ2 of the residual. As noted in the

text we use the following expression which provides an unbiased estimator under
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homoskedasticity:

σ̂2 = (NT −N − J)−1Y ′(I − A(A′A)−1A′)Y.

Importantly, job stayers do not contribute to the estimation of this variance since

they only have a single spell observation per individual. This is because the data are

in event-study form. If this were not the case, one might worry about the fact that

the formula assumes away serial correlation within job spells.

The next step is to compute the trace formula. When the design matrix A is not

too large, we directly invert the matrix and compute:

B̂ias
FE−HO

Q = σ̂2 Trace
(
(A′A)−1Q

)
.

Estimation of FE-HO: Approximation. When the design matrix is too large to

be fully inverted we rely on trace approximation methods. To be precise, we use the

Hutchinson stochastic trace estimator introduced in Hutchinson (1990), and proposed

in the present context in Gaure (2014) and Kline et al. (2020), whereby the trace is

approximated by

Tp =
1

p

p∑
i=1

r′i(A
′A)−1Qri,

where the ri are i.i.d. Rademacher random vectors. This procedure only requires

solving p linear systems, instead of trying to invert the matrix. It can be easily

parallelized and in practice only a few draws seem to be sufficient to approximate the

trace well.

Estimation of FE-HE. We refer to Kline et al. (2020) for a full description of their

approach. Here we first outline the method while abstracting from computational

feasibility concerns. The first step requires computing the leverage coefficients for

each spell observation (i, t). This is done by computing:

σ̂2
it =

Yit

(
Yit − α̂i − ψ̂j(i,t)

)
1− Pit,it

,
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where

Pit,it = Ait (A′A)
−1
A′it.

This expression however does not recover the σ̂2
it for the stayers since they only have

one spell-observation. In order to be able to compute the trace correction for the

covariance in a sample that includes both stayers and movers, we then make an

homogeneity assumption that σ2
it for stayers is equal to the average among movers at

the same firm j(i, t); that is,1

[σ̂2
it]
stayer = Êi′σ̂2

i′t for movers i′ in j(i, t) .

Next, we construct the trace correction expression

Trace
[
A (A′A)

−1
Q (A′A)

−1
A′Ω̂(A)

]
,

where Ω̂(A) = diag[σ̂2
it]. We compute this formula directly whenever inverting the

matrix A′A is computationally feasible.

Estimation of FE-HE: Approximation. There are two computational bottle-

necks when computing the FE-HE estimator. One is the computation of the trace

expression, for which we rely on the same Hutchinson trace estimator described above.

This approximation performs very well in our experience.

The second computational bottleneck is the computation of Pit,it, which requires

effectively inverting the A′A matrix. This expression does not benefit from the same

aggregation property that computing the trace does. Indeed, the Pit,it enter the

expression of σ̂2
it as inverses. This is a difficult computational problem that is actively

researched (Drineas et al., 2012). We decided to apply the procedure described in the

computational appendix of Kline et al. (2020). Since we have Pit,it = Ait (A′A)−1A′it,

if we could solve for Z in

(A′A)Z = A′,

1As an alternative one could consider the following. First, compute the variance of firm effects
in differences using movers and re-weight. Second, compute the covariance among movers using the
leave-one-out procedure. Finally, compute the covariance for the stayers by using the covariance of
their log-earnings with the estimated firm effects.
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we would simply get Pit,it = A′itZi. We draw a set of p random vectors ri as in the

Hutchinson approach, and to combine them into a matrix Rp with p columns, and

solve instead

(A′A)Z̃ = (RpA)′,

and use P̃it,it = A′itZ̃i. We thus use the following approximation:

P̃it,it = A′it(A
′A)−1A′R′p,

which requires solving only p linear system instead of inverting A′A fully.

In practice, using a small p tends to give some estimates P̃it,it that are not strictly

less than 1. Since (1−Pit,it) enters in the denominator of σ̂2
it, this can cause unbounded

σ̂2
it’s. We choose to increase p until all P̃it,it’s are < 1. This requires p to be in the

order of thousands.

B.2 Correlated random-effects

Overview. The correlated random-effects (CRE) method consists of two steps.

In the first step, group firms using a k-means clustering approach. In the sec-

ond step, estimate the parameters of the grouped random-effects model by com-

puting simple means, variances and covariances of log-earnings within and between

groups. The first step relies on a standard Lloyd’s algorithm for k-means. The

second step involves mean and covariance restrictions that are linear in parame-

ters. With a moderate number of parameters, estimation in the second step is

thus straightforward. A fast implementation of the CRE estimator is provided at

https://github.com/tlamadon/pytwoway.

Estimating firm groups. Let us first describe how we estimate the firm groups

that we use to build the CRE specification. Accounting for the groups allows one

to correlate worker and firm effects to mobility patterns, as we explain in the next

paragraph. To estimate the firm grouping {kj, j = 1, ..., J}, we follow Bonhomme

et al. (2019) and cluster firms together based on earnings information. For example,
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using mean log-earnings one can estimate the partition by minimizing

J∑
j=1

nj(Y j − µ(kj))
2,

with respect to µ(1), ..., µ(K) and k1, ..., kJ , where nj is firm size, and Y j is the mean

log-earnings in firm j. In practice we add information beyond means by including

the full earnings distribution function, evaluated at a grid of 20 points (20 percentiles

of the overall earnings distribution). For computation we use Lloyds’ algorithm for

k-means, with 30 starting values. Consistency of k-means is not straightforward to

establish in this context, due to the presence of within-k firm heterogeneity. In single-

agent panel data, Bonhomme et al. (Forthcoming) provide conditions for consistency

and asymptotic normality of functions of the heterogeneity such as variance compo-

nents as K tends to infinity together with the sample size. In Appendix C, we provide

a consistency argument in the present matched employer-employee setting.

Overview of the model. In CRE, we impose three orthogonality conditions on

Σ(A) and the covariance matrix Ω(A) of εit:

Cov(αi, ψj) = 0 for (i, j) ∈ S1, (B1)

Cov(ψj, ψj′) = 0 for (j, j′) ∈ S2, (B2)

Cov(εit, εi′t′) = 0 for t , t′, i 6= i′, (B3)

where all covariances are conditional on A but we omit the dependence in the notation.

Here S1 contains worker-firm pairs (i, j) such that i never works in j at any point in

the sample, and S2 contains firm pairs (j, j′) where j 6= j′.

Equations (B1) and (B2) are conditions about the covariance structure of worker

and firm effects. Such conditions are not needed in fixed-effects approaches. Allowing

the mean vector µ(A) and the variance matrix Σ(A) to depend on worker and firm

indicators A will be helpful to relax these conditions by restricting the sets S1 and S2.
Indeed, assuming that (B2) holds for all firm pairs may be empirically strong, if for

example firms j and j′ that are close to each other in economic distance have correlated

effects ψj and ψj′ because they share the same suppliers. In our implementation, we
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group firms and we only assume that ψj and ψj′ are uncorrelated conditional on j

and j′ belonging to different firm groups.2 Likewise, we only assume that αi and ψj

are uncorrelated in (B1) when i never visits the group of firm j. In turn, (B3) is

an assumption on the covariance structure of εit. Note that this condition does not

restrict the covariance matrix Ω(A) beyond cross-worker covariances.

Based on (B1)-(B2)-(B3), if one is willing to assume in addition that αi, ψj, and

εit are independent of A, one can build a simple CRE specification that depends on

only three parameters: the variance of firm effects and the covariance between worker

and firm effects, which are our parameters of interest, and the covariance between

the worker effects of two workers who are employed in the same firm at some point

in time. Hence this model is very parsimonious. Moreover, the parameters can be

recovered from cross-worker covariance restrictions.

As an example, consider two workers i and i′ who work in the same firm in period

t. Both i and i′ move between t and t′, and i′ (respectively, i) moves to a firm where i

(resp., i′) never works. In this case the variance of firm effects can be recovered from

Cov(Yit′ − Yit, Yi′t′ − Yi′t) = Cov(ψj(i,t′) − ψj(i,t) + εit′ − εit,
ψj(i′,t′) − ψj(i′,t) + εi′t′ − εi′t)

= Cov(ψj(i,t′) − ψj(i,t), ψj(i′,t′) − ψj(i′,t))
= Cov(ψj(i,t), ψj(i′,t))

= Var(ψj(i,t)), (B4)

and the covariance between worker and firm effects can be recovered from

Cov(Yit′ − Yit, Yi′t′) = Cov(ψj(i,t′) − ψj(i,t) + εit′ − εit, αi′ + ψj(i′,t′) + εi′t′)

= Cov(ψj(i,t′) − ψj(i,t), αi′ + ψj(i′,t′))

= Cov(ψj(i,t′) − ψj(i,t), αi′)
= −Cov(ψj(i′,t), αi′). (B5)

To derive both (B4) and (B5) we have used the model in the first line, (2) and (B3)

2A related approach would be to only consider firms j and j′ in S2 that do not directly share a
worker (i.e., a mover), although they might share workers indirectly through other firms j′′.
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in the second line, and (B2) in the third line. In the last line, we have used that

j(i, t) = j(i′, t) to derive (B4), and we have used (B1) to derive (B5). In addition,

this simple CRE model implies a number of overidentifying restrictions. Covariance

restrictions such as (B4) and (B5) are the basis of our strategy to estimate the CRE

model.

Specification details. Specifying the random-effects model consists in listing the

restrictions that we impose on the vector µ(A) and the square matrices Σ(A) and

Ω(A). Ω(A) captures the error structure of the residuals across observations and has

a number of rows equal to the number of observations. µ(A) and Σ(A) describe the

mean and variance of γ, and have respective length and number of rows equal to the

number of workers plus the number of firms.

To be exhaustive, we need to specify how each entry in these matrices and vectors

depends on A. To do so, we note that the γ vector contains three distinct types

of elements: workers with only one employer, workers with multiple employers (i.e.,

movers), and firms. We describe the specification of µ(A) and Σ(A) by listing the

elements of µ(A) and Σ(A) for each of these three types of entries. Throughout,

we assume the data are in event study format, and hence movers have exactly two

employers. We also make use of a firm grouping structure, where kj denotes the group

of firm j and we write kit = kj(i,t) to simplify the notation.

We assume that µ(A) does not depend on worker and firm identities beyond firm

groups. We denote

E[αi |A] = E[αi | ki1] = µα(ki1) for stayers,

E[αi |A] = E[αi | ki1, ki2] = µα(ki1, ki2) for movers,

E[ψj |A] = E[ψj | kj] = µψ(kj).

The matrix Σ(A) consists of variances and covariances of worker effects and firm

effects. We assume that Σ(A) does not depend on worker and firm identities beyond

firm groups. We denote, for any firm j,

Var[ψj |A] = Var[ψj | kj] = Σψψ(kj).
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For the off-diagonal terms, we assume that Cov[ψj, ψj′ |kj, kj′ ] = 0 for kj 6= kj′ and

leave the covariance within unrestricted. In estimation we do not estimate within-

group covariances. It is important to also note that this does not restrict the covari-

ance at the group level, since the µψ(k) are unrestricted. Next, for any firm j and

any two movers i and i′ we denote:

Cov[ψj, αi |A] = Cov[ψj, αi | j, j(i, 1), j(i, 2)]

= 1
[
j(i, 1)=j or j(i, 2)=j

]
Σm
αψ(kj),

Cov[αi, αi′ |A] = Cov[αi, αi′ |j(i, 1), j(i, 2), j(i′, 1), j(i′, 2)]

= 1
[
j(i, 1)=j(i′, 1)

]
Σm
αα′(kj(i,1)) + 1

[
j(i, 2)=j(i′, 2)

]
Σm
αα′(kj(i,2))

+ 1
[
j(i, 2)=j(i′, 1)

]
Σm
αα′(kj(i,2)) + 1

[
j(i, 1)=j(i′, 2)

]
Σm
αα′(kj(i,1)).

For any firm j and any two stayers i and i′ we denote

Cov[ψj, αi |A] = Cov[ψj, αi | j, j(i, 1)] = 1
[
j(i, 1)=j

]
Σs
αψ(kj),

Cov[αi, αi′ |A] = Cov[αi, αi′ | j(i, 1), j(i′, 1)] = 1
[
j(i, 1)=j(i′, 1)

]
Σs
αα′(kj(i,1)).

For any given stayer i and any given mover i′ we denote:

Cov[αi, αi′ |A] = Cov[αi, αi′ | j(i, 1), j(i′, 1), j(i′, 2)]

= 1
[
j(i, 1)=j(i′, 1)

]
Σsm
αα′(kj(i,1)) + 1

[
j(i, 1)=j(i′, 2)

]
Σsm
αα′(kj(i,1)).

Finally, we let the diagonal along workers unspecified since our focus is on the variance

of firm effects and the covariance between worker and firm effects.3

As a reminder, the approach in Woodcock (2008) would set µα(k)=µα, µψ(k)=µψ,

and Σψψ(k)=Σψψ, as well as Σm
αψ(k)=Σs

αψ(k)=Σm
αα′(k)=Σs

αα′(k)=Σsm
αα′(k)=0. Based

on this specification, Woodcock focused on posterior estimates.

Estimation. Here we describe how we estimate the quantities that we use to re-

construct our two main parameters of interest (that is, the variance of firm effects

and the covariance), as presented in equation (7). This involves the vector µ(A) and

3A natural specification would be to allow for the variance of the worker effects of stayers to be
group-specific and for the variance of the worker effects of movers to depend on the group pairs.
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a subset of the elements in Σ(A).

First we estimate all elements in µ(A) as

min
µα(k,k′),µα(k),µψ(k)

∑
i : stayer

(
Yi1 − µψ(ki1)− µα(ki1)

)2
+

∑
i :mover

(
Yi1 − µψ(ki1)− µα(ki1, ki2)

)2
+

∑
i :mover

(
Yi2 − µψ(ki2)− µα(ki1, ki2)

)2
.

Next, it turns out that the elements in Σ(A) enter equation (7) only through the

following group aggregates. Specifically we define for (t, t′, p) ∈ {1, 2}3 and compute:

Cm
tt′(p) = Ê(i,i′)∈Smp

[(
Yit − µα(ki1, ki2)− µψ(kit))

)(
Yi′t′ − µα(ki′1, ki′2)− µψ(ki′t′))

)]
,

where the set Sm
p of pairs of workers consists of movers leaving the same firm and

moving to a different firm group, or alternatively moving to the same firm and coming

from two different firm groups; that is,

Smp = {(i, i′ 6=i) movers, s.t. j(i, p)=j(i′, p), ki,−p 6=ki′,−p, ki,−p 6=ki,p, ki′,−p 6=ki′,p}.

Similarly, we define for (t′, p) ∈ {1, 2}2 and compute:

Cs
t′(p) = Ê(i,i′)∈Ssp

[(
Yit − µα(ki1)− µψ(ki1))

)(
Yi′t′ − µα(ki′1, ki′2)− µψ(ki′t′))

)]
,

where

Ssp = {(i, i′ 6=i), i stayer, i′ mover, s.t. j(i, 1)=j(i′, p), ki′,−p 6=ki1}.

To see the mapping between the sufficient elements of Σ(A) in equation (7) and

the previously defined group aggregates, note that:

Cm
22(1) = Cm

11(2) = Êk
[
Σm
αα′(k)

]
,

Cm
12(1) = Cm

12(2) = Êk
[
Σm
αα′(k) + Σm

αψ(k)
]
,

Cm
11(1) = Cm

22(2) = Êk
[
Σψψ(k) + Σm

αα′(k) + 2Σm
αψ(k)

]
,
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where Êk denote means, weighted by group sizes. In turn, the covariances based on

combinations of stayers and movers give:

Cs
2(1) = Cs

1(2) = Êk
[
Σsm
αα′(k) + Σm

αψ(k)
]
,

Cs
1(1) = Cs

2(2) = Êk
[
Σψψ(k) + Σsm

αα′(k) + Σs
αψ(k) + Σm

αψ(k)
]
.

Lastly, given the estimated µ’s and C’s we construct the variance components

appearing in equation (7).

Posterior estimator. Under an additional joint normality assumption of γ and

ε given A, a posterior estimator V̂ P
Q of VQ is given by the posterior mean of γ′Qγ in

the Gaussian model; that is:

(Σ̂(A)−1µ̂(A) + A′Ω̂(A)−1Y )′B̂(A)−1QB̂(A)−1(Σ̂(A)−1µ̂(A) + A′Ω̂(A)−1Y )

+ Trace(B̂(A)−1Q),

where B̂(A) = Σ̂(A)−1 + A′Ω̂(A)−1A. Relative to the main CRE estimator, we need

all the elements of Σ̂(A), and hence specify those by imposing additional zeros and

modeling the entire diagonal. There are two computational challenges. First, Σ̂(A)

is a non-sparse matrix since we model covariances between worker effects and firm

effects. Second, implementation requires computing the inverse of the matrix in the

trace expression. This second challenge is as for the FE-HO estimator. In the paper

we focus on the computation of the posterior estimator for the variance of firm effects.

This only involves the part of Σ̂(A) between firms, which is diagonal. We approximate

the trace using the Hutchinson approach, as we do for FE-HO.

C Consistency of grouped fixed-effects and corre-

lated random-effects in the AKM model

Consider model (1) without covariates, with T = 2 periods:

Yit = αi + ψj(i,t) + εit, t ∈ {1, 2}. (C6)
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Let ηj = (ψj, ξj)
′ denote a d-dimensional vector of firm heterogeneity. In period 1, αi

are drawn in firm j(i, 1) from a distribution that depends on ηj(i,1). This corresponds

to the setup in Bonhomme et al. (2019), except that here ηj is continuous and the

model is additive in worker and firm effects.

We consider a grouped fixed-effects (GFE) estimator where we cluster firms ac-

cording to a moment of log-wages in the firm (e.g., a discretized estimate of the

log-wage cdf), using K groups. We study the consistency of the GFE estimator of

the firm effects ψ, relative to the average squared norm.

Let J denote the number of firms, n denote the number of job movers in the

sample, and m denote the minimum number of observations per firm (i.e., minimum

firm size) in the first period. Let G denote the J×K matrix of zeros and ones, which

maps group parameters to firms, where the group structure is the one estimated using

k-means clustering.

By Bonhomme et al. (Forthcoming), as the number of groups K tends to infinity

with the minimum firm size m, we have, for some constant A,

‖GA− η′‖2/J = Op

(
m−1

)
+Op

(
K−

2
d

)
,

where ‖ · ‖ denotes the Euclidean norm. Notice the rate of convergence depends on

the dimension d of ηj. Letting a be the first column of A, we thus have

‖Ga− ψ‖2/J = Op

(
m−1

)
+Op

(
K−

2
d

)
. (C7)

Next, let us write model (C6) in first differences; that is, stacking all observations

in column vectors,

∆Y = Bψ + U,

where ∆Yit = Yi,t+1 − Yit. We make the following assumptions, where λmin and λmax

denote the minimum and maximum eigenvalues of B′B/n, respectively.

A1. ‖B′U‖
n
√
Jλmin

= op(1).

A2. λmax

λmin
×max

{
m−1, K−

2
d

}
= op(1).

For A1 to hold, it is sufficient that E(U ′B′BU)

n2Jλ2min
= o(1). As an example, if E(U) = 0
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and E(UU ′) = σ2I, then it suffices that
σ2 Trace

(
B′B
n

)
nJλ2min

= o(1). A sufficient condition for

this is σ2 λmax

nλ2min
= o(1). This allows λmin to tend to zero, and λmax to tend to infinity,

albeit at sufficiently slow rates.

For A2 to hold, it is sufficient that λmax

λmin
does not tend to infinity faster than the

minimum firm size, and that K tends to infinity sufficiently quickly relative to it.

The required rate on K increases with the dimension d.

When B represents the first differences of worker-firm employment relationships,

λmin is a measure of the connectedness of the worker-firm graph. Jochmans and

Weidner (2019) show how measures of graph connectedness influence firms-specific

least squares estimates. Moreover, λmax ≤ Trace(B′B/n) = 1.

Let us denote the least squares (AKM) estimator as

ψ̂ = (B′B)−1B′∆Y.

In addition, let us denote the GFE estimator as

ψ̃ = G(G′B′BG)−1G′B′∆Y.

Proposition C1.

If A1 holds, then ‖ψ̂ − ψ‖2/J = op(1).

If A1 and A2 hold, then ‖ψ̃ − ψ‖2/J = op(1).

By Proposition C1, the GFE estimate of a bounded quadratic form VQ = ψ′Qψ

is consistent; that is,

ψ̃′Qψ̃ = ψ′Qψ + op(1).

In addition, writing model (C6) in vector form, we have

Y = Aαα + Aψψ + ε,

and the GFE estimator of V R ≡ α′Rψ is consistent as well; that is,(
A†α(Y − Aψψ̃)

)′
Rψ̃ = α′Rψ + op(1).

This shows that GFE estimators of the variance of firm effects and the covariance
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between firm and worker effects are consistent.

The CRE estimators of these variance components will then also be consistent

under A1 and A2, since the within-group variance tends to zero as the number of

groups tends to infinity. Note that this asymptotic result holds as both K and the

minimum firm size tend to infinity. In finite samples, and for fixed K, accounting

for the within-group variance of firm effects may have a non-negligible effect on the

estimates, as illustrated by our empirical findings.

In addition, although under the current assumptions the AKM, GFE and CRE

estimators are all consistent, our findings also suggest that, in finite samples, the

GFE and CRE estimators of firm effects may be more precise than AKM, resulting

in variance components that are less biased.

Proof. We have, using A1,

‖ψ̂ − ψ‖/
√
J =

∥∥∥∥∥
(
B′B

n

)−1
B′U

n

∥∥∥∥∥ /√J ≤ λ−1min‖B′U‖/(n
√
J) = op(1).

This shows the first claim.

To show the second claim, let µ̃ = (G′B′BG)−1G′B′∆Y . We have, by the least

squares property,

‖∆Y −Bψ̃‖2/n = ‖∆Y −BGµ̃‖2/n ≤ ‖∆Y −BGa‖2/n.

Equivalently, we have

‖Bψ −Bψ̃‖2/n+ ‖U‖2/n+ 2U ′(Bψ −Bψ̃)/n

≤ ‖Bψ −BGa‖2/n+ ‖U‖2/n+ 2U ′(Bψ −BGa)/n.

That is,

‖Bψ −Bψ̃‖2/n+ 2U ′(Bψ −Bψ̃)/n ≤ ‖Bψ −BGa‖2/n+ 2U ′(Bψ −BGa)/n.

Hence, using the Cauchy Schwartz inequality,

λmin‖ψ − ψ̃‖2 ≤ 2‖B′U‖‖ψ − ψ̃‖/n+ λmax‖ψ −Ga‖2 + 2‖B′U‖‖ψ −Ga‖/n.
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It follows that

‖ψ − ψ̃‖2/J ≤ 2‖B′U‖/(n
√
Jλmin)‖ψ − ψ̃‖/

√
J

+ (λmax/λmin)‖ψ −Ga‖2/J + 2‖B′U‖/(n
√
Jλmin)‖ψ −Ga‖/

√
J.

Using A1, A2, and (C7), we thus have

‖ψ − ψ̃‖2/J ≤ op(1)‖ψ − ψ̃‖/
√
J + op(1).

It follows that

‖ψ − ψ̃‖2/J = op(1).

D Bias due to Estimating the Variance of Firm

Effects on a Selected Subsample

When implementing FE estimation, a number of recent studies restrict the population

of interest to a subset of firms for which firm effects may be more easily recovered,

such as large firms (see for example Song et al. 2019, Sorkin 2018, and Bassier et al.

2021). Similarly, the FE-HE bias-correction method restricts the population to the

leave-one-out subsample of strongly connected firms (Kline et al., 2020). Because each

of these included subsamples is selected by the researcher on observable differences

from the corresponding excluded subsample, the included and excluded subsamples

may have very different distributions of firm effects. Thus, even if these approaches

recover the true variance of firm effects for the included subsample, it is not obvious

that one can extrapolate results from the included subsample to the full population.

In this appendix, we characterize analytically and numerically the bias introduced

by approximating the variance of firm effects in the population using estimates for

a selected subsample. Let V1 denote the variance of firm effects for the included

subsample, V0 denote the variance of firm effects for the excluded subsample, and π

denote the share of workers employed by the included subsample of firms.4 By the law

4Throughout this paper, we refer to the largest connected set of firms as the population of interest,
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of total variance, the variance of firm premiums in the full population, V̄ , is related

to V1 and V0 by the following decomposition:

V̄ = πV1 + (1− π)V0︸ ︷︷ ︸
Within Variance

+πE2
1 + (1− π)E2

0 − Ē2︸ ︷︷ ︸
Between Variance

, (D8)

where Ē, E1, and E0 denote the mean firm effect in the population, included sub-

sample, and excluded subsample, respectively. Normalizing Ē = 0 without loss of

generality, this expression becomes,

V̄ = πV1 + (1− π)V0︸ ︷︷ ︸
Within Variance

+π(1− π)(E1 − E0)
2︸ ︷︷ ︸

Between Variance

. (D9)

which emphasizes the importance of the difference in mean firm effects between the

included and excluded subsamples, E1 − E0.

The object of interest is the variance of firm effects in the population, V̄ . Assume

the researcher knows V1 and π, but does not know V0 or E1 − E0. Using the above

decomposition, the bias when using V1 as an approximation to V̄ is given by,

V1 − V̄︸ ︷︷ ︸
Subsample Bias

= (1− π)(V1 − V0)︸ ︷︷ ︸
Within Contribution

− π(1− π)(E1 − E0)
2︸ ︷︷ ︸

Between Contribution

. (D10)

This expression provides three results. First, V1 tends to be upward-biased (downward-

biased) for V̄ if the excluded subsample is relatively less (more) variable. Second,

V1 becomes more downward-biased as the mean firm premium difference grows be-

tween the included and excluded subsamples. For example, if larger firms have much

greater mean firm premiums than smaller firms, then E1 − E0 is large when the in-

cluded set only contains large firms, introducing substantial downward-bias. Third,

limπ→1 V̄ = V1, so V1 provides a good approximation to V̄ when the excluded subsam-

ple contains a small share of the population. In the US, 5% of workers are employed

by firms that are excluded from the leave-one-out set (π = 0.95), while 22% of workers

are employed by firms that are excluded by the 20 workers per firm sample restric-

as this is traditionally the population under focus in studies based on the AKM model. However,
one may be interested in the population inclusive of disconnected firms. The CRE approach can be
used to produce variance component estimates for the entire sample, including disconnected firms.
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tion (π = 0.78); see Appendix Tables F2 and F3, respectively. Thus, there may be

little bias when only using the leave-one-out set to learn about the population but

substantial bias when only using large firms.

We now characterize the bias numerically. First, it is useful to parameterize the

bias relative to the size of V1 as follows:

V1 − V̄
V1︸ ︷︷ ︸

% Subsample Bias

= (1− π)VZ︸ ︷︷ ︸
% Within Contribution

− π(1− π)E2
Z︸ ︷︷ ︸

% Between Contribution

, (D11)

where VZ ≡ V1−V0
V1

and EZ ≡ E1−E0√
V1

. We can use this parameterization to choose

a reasonable range of numerical values over which to evaluate the bias. For the

variance, suppose that V0 is in the range from 50% below V1 to 50% above V1, which

is equivalent to assuming VZ ∈ [−1
2
, 1
2
]. For the mean firm effect, suppose E0 is in the

range from equal to E1 to a standard deviation different from E1, which is equivalent

to assuming EZ ∈ [0, 1]. Note that we focus on E1 ≥ E0 because the restrictions

imposed in the literature favor keeping large firms in the included subsample, and

we expect larger firms to have greater firm effects. For now, we choose π = 0.78,

which corresponds to the share of workers in the included sample when imposing a

minimum of 20 workers per firm; we consider alternative choices of π below.

In Appendix Figure F15(a), we plot the Between contribution across VZ . We

find that the Between contribution leads to a downward-bias of about 5% when the

mean firm effect differs by one-half of a standard deviation (EZ = 1
2
). However, this

increases to a downward-bias of about 17% when the mean firm effect differs by a

full standard deviation (EZ = 1). We see that, because the bias is increasing at

an increasing rate in EZ , it can become quite large when the included and excluded

subsamples contain firms of different average sizes. In Appendix Figure F15(b), we

plot the Within contribution across VZ . We find that the Within contribution leads

to a downward-bias of about 10% when the excluded sample is half as variable as

the included sample (VZ = −1
2

), and a 10% upward-bias when the excluded sample is

50% more variable than the included sample. The bias grows linearly in, and has the

same sign as, V1 − V0. In Appendix Figures F15(c-d), we plot the total bias across

combinations of (EZ , VZ). We see that the Between and Within contributions to the

bias can combine to imply a downward-bias of nearly 30% or an upward-bias of about
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10%.

Lastly, in Appendix Figure F16, we examine numerically how the bias depends

on π when treating the full set of workers and firms in the 6-year panel (inclusive

of disconnected firms) as the population of interest; see Table 1. We compare the

value of π in the US connected set when using a 2-year panel (π = 0.47), a 3-year

panel (π = 0.62), and a 6-year panel (π = 0.93). In Appendix Figure F16(a), we find

that reducing π from the value in the 6-year panel to the value in the 3-year panel

magnifies the downward-bias substantially, from a maximum of 5% downward bias to

a maximum of 25% downward bias. However, reducing π from the value in the 3-year

panel to the value in the 2-year panel has little impact on the Between contribution.

This is because π enters the Between contribution as π(1 − π), which is maximized

at π = 0.5 and relatively flat near this value. In Appendix Figure F16(b), we find

that reducing π from the value in the 6-year panel to the value in the 3-year panel

has the effect of rotating the line of bias. The absolute value of the bias rises from a

maximum of about 4% in the 6-year panel to a maximum of about 19% in the 3-year

panel. Reducing π from the value in the 3-year panel to the value in the 2-year panel

further rotates the line such that the absolute value of the bias rises to a maximum

of about 26%. Combining the Between and Within contributions to bias, we see that

using only the included subsample in the estimation can lead to 11% downward bias

in the 6-year panel but more than 50% downward bias in the 2-year panel.

E Comparisons to Existing Work

In this section, we compare the results obtained from the methods we use to those

obtained in previous studies.

E.1 Italian data

We first compare our results on the Italian data to those from the May 2020 version

of Kline et al. (2020). Rather than our baseline sample selection (described in Section

2), we use their replication code to construct a sample as similar to theirs as possible.

A key difference from our baseline analysis is that we now focus only on the years

1999 and 2001. Comparing descriptive statistics of our replication sample in row 3 of
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Appendix Table F4 to those reported in Table 1 of Kline et al. (2020), we find that

the sample counts for number of observations, movers, and firms are nearly identical,

and the estimates of the total variance of daily wages are very close.

In Appendix Table F4, we also apply the FE, FE-HO, and FE-HE estimators

to our Kline et al. (2020) replication sample. Our implementation of the estimators

differs from Kline et al. (2020) in two ways. First, we collapse yearly data to spell

level data as described in Appendix A. Second, as in our main analysis, we use only

one spell observation per stayer spell rather than assuming errors are uncorrelated

over time within stayer spells. This choice matters for FE-HO, but not for FE-HE.

We find that these differences in implementation do not materially change the

estimates when using our replication sample. Using our replication sample, we find

similar results as in Kline et al. (2020). Concretely, we compare estimates from our

replication sample in row 3 of Appendix Table F4 to Table 2 of Kline et al. (2020).

The contribution of firm effects to wage inequality is 19% for FE, 15% for FE-HO,

and 14% for FE-HE, while Kline et al. (2020) estimate 19% for FE, 14% for FE-HO,

and 13% for FE-HE. We find that the contribution of sorting to wage inequality is

6% for FE, 15% for FE-HO, and 16% for FE-HE, while Kline et al. (2020) estimate

4% for FE, 11% for FE-HO, and 16% for FE-HE.

In sum, we conclude that our implementation of the estimators delivers similar

results to Kline et al. (2020) on the Italian data once we use a similar sample.

E.2 US data

We now compare our results on the US tax data to those from Song et al. (2019) (Table

3, interval 2007-2013) and Sorkin (2018) (Table 1). We differ from their papers in

three key dimensions. First, we consider the full sample of W-2 tax records, whereas

Sorkin (2018) considers LEHD data (UI records) from 27 states and Song et al.

(2019) consider SSA earnings records for men. Second, we use a minimum earnings

threshold of 100% of the annualized minimum wage, whereas Sorkin (2018) and Song

et al. (2019) set the minimum earnings threshold to 25% of the annualized minimum

wage. Third, since we want to include small firms when studying inequality, we do

not impose a minimum firm size restriction in the baseline results. By comparison

Sorkin (2018) restricts the sample to firms with a minimum of 15 workers in each
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year (among workers who appear at least twice in the sample) and Song et al. (2019)

restrict the sample to firms with at least 20 workers in each year.

To understand the impact of the restrictions made by Sorkin (2018) and Song

et al. (2019), we now consider alternative minimum earnings and minimum firm size

thresholds:

Minimum earnings threshold. As discussed in Subsection 2.2, we examine how

our results change when imposing minimum earnings thresholds ranging from 25%

to 100% of the annualized minimum wage. When using the 25% threshold, we find

that the variance of log earnings is 0.82 (see Appendix Table F3). This estimate is

higher than the estimate of 0.67 reported in Table 1 of Sorkin (2018), and lower than

the estimate of 0.92 reported in Table 3 of Song et al. (2019) for years 2007-2013.

When increasing the minimum earnings threshold, the variance of log earnings must

mechanically decline, and our baseline sample (100% minimum earnings threshold)

has a substantially smaller variance of 0.41. However, the between-firm share of

variance is nearly constant at about 40% across all minimum earnings thresholds,

which is the same number reported in Table 2 of Song et al. (2019). Shifting attention

to the AKM estimates, we find that the FE estimate of the share of earnings variation

due to firm effects is somewhat decreasing in the minimum earnings threshold while

the share due to sorting is strongly decreasing (see Appendix Figure F2).

Minimum firm size threshold. As discussed in detail in Section 6, we examine

how our results change when imposing minimum firm size thresholds ranging from

0 to 50 workers. Neither the variance of log earnings nor the between-firm share of

earnings variation changes materially with the minimum firm size threshold. However,

the FE estimate of the share of earnings variation due to firm effects is decreasing

in the firm size threshold while the share due to sorting is increasing (see Appendix

Figure F7). When imposing a minimum firm size threshold of 20 workers, the FE

estimate of the share of earnings variation due to sorting rises to between 8% and 9%

(see Appendix Table F3), which is close to the estimates by Sorkin (2018) and Song

et al. (2019) of 10% and 12%, respectively.

Taken together, the results in Appendix Table F3 help explain how our estimates
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compare to Sorkin (2018) and Song et al. (2019). On the one hand, imposing a

higher earnings threshold in the baseline sample tends to decrease our FE estimate of

the contribution of firm effects to wage inequality and decrease our FE estimate of the

contribution of sorting. On the other hand, imposing a lower firm size threshold in

our baseline sample for the US tends to increase our FE estimate of the contribution

of firm effects to wage inequality and decrease our FE estimate of the contribution

of sorting. These differences partially offset each other for the contribution of firm

effects, resulting in a FE estimate of the share of earnings inequality due to firm

effects at 12%, in between the estimates of Sorkin (2018) and Song et al. (2019) at

14% and 9%, respectively. However, both tend to decrease our FE estimate of the

share due to sorting relative to the estimates of Sorkin (2018) and Song et al. (2019).
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F Additional Tables and Figures

Table F1: Survey of Estimates in the Existing Literature

Paper Country Years Total Var Firm Effects Sorting

Abowd et al. (1999) France 1976-1987 (6= 1981, 1983) 0.269 87.0% 46.2%
Abowd et al. (1999) France 1976-1987 (6= 1981, 1983) 0.269 82.8% 20.3%
Abowd et al. (2002) France 1976-1987 (6= 1981, 1983) 0.269 30.1% -27.2%
Abowd et al. (2002) USA, WA 1984-1993 0.278 19.2% -2.0%
Abowd et al. (2004)? France 1976-1996 0.354 61.4% -31.7%
Abowd et al. (2004)? USA LEHD, 1990-2000 0.771 16.9% 1.5%
Alvarez et al. (2018) Brasil 1988-1992 0.750 21.3% 17.3%
Alvarez et al. (2018) Brasil 1992-1996 0.750 22.7% 18.7%
Alvarez et al. (2018) Brasil 1996-2000 0.690 23.2% 20.3%
Alvarez et al. (2018) Brasil 2000-2004 0.620 21.0% 19.4%
Alvarez et al. (2018) Brasil 2004-2008 0.530 17.0% 18.9%
Alvarez et al. (2018) Brasil 2008-2012 0.470 14.9% 19.1%
Andrews et al. (2008)? Germany LIAB 1993-1997, Bias Corr. 0.055 21.5% -13.1%
Andrews et al. (2008)? Germany LIAB 1993-1997, Not Corr. 0.057 23.5% -18.0%
Bagger and Lentz (2019) Denmark 1985-2003 0.097 14.4% -2.1%
Card et al. (2013) Germany Universe, 1985-1991 0.137 18.2% 2.2%
Card et al. (2013) Germany Universe, 2002-2009 0.249 21.3% 16.5%
Card et al. (2018)? Portugal 2005-2009 0.275 22.8% 13.0%
Lopes de Melo (2018)? Brasil 1995-2005 0.601 30.0% 3.6%
Engbom and Moser (2021) Brasil 2010-2014 0.453 19.4% 19.9%
Engbom and Moser (2021) Brasil 1994-1998 0.709 29.9% 19.7%
Goldschmidt and Schmieder (2017) Germany IEB, 2008 0.205 26.7% 20.8%
Goldschmidt and Schmieder (2017) Germany IEB, 1985 0.132 21.9% -3.8%
Goux and Maurin (1999)? France 1990-1992 0.181 12.9% -12.1%
Goux and Maurin (1999)? France 1991-1993 0.157 30.2% -5.1%
Goux and Maurin (1999)? France 1992-1994 0.154 65.3% -48.1%
Goux and Maurin (1999)? France 1993-1995 0.151 19.6% 1.3%
Gruetter and Lalive (2009) Austria 1990-1997 0.224 26.6% -22.5%
Iranzo et al. (2008) Italy Manufacturing, 1981-1997 0.110 13.1% 2.1%
Kline et al. (2020)? Italy 1999-2001, AKM 0.198 18.0% 3.9%
Kline et al. (2020)? Italy 1999-2001, Homosk. Corr. 0.198 14.9% 9.8%
Kline et al. (2020)? Italy 1999-2001, Leave-out 0.184 13.0% 16.0%
Song et al. (2019) USA 1980-1986 0.708 11.9% 4.7%
Song et al. (2019) USA 1987-1993 0.776 9.7% 7.3%
Song et al. (2019) USA 1994-2000 0.828 8.1% 9.2%
Song et al. (2019) USA 2001-2007 0.884 8.5% 10.6%
Song et al. (2019) USA 2007-2013 0.924 8.7% 11.7%
Sorkin (2018) USA LEHD, 2000-2008 0.670 14.0% 10.0%
Woodcock (2015) USA LEHD, 1990-2000 0.410 19.5% -1.0%

Notes: In this table, we provide a survey of estimates from a set of studies that

estimate the contribution to earnings or wage inequality of firm effects and the sorting

of workers to firms using the FE estimator. “Firm Effects” refers to Var(ψ)/Var(Y )

and “Sorting” refers to 2Cov(α,ψ)/Var(Y ), where Var(Y ) is the total variance of log

earnings or wages. ∗ indicates that Var(Y ) is not reported, so we estimate it as

Var(ψ)+Var(α)+2Cov(ψ, α).
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Figure F1: Workers Employed the Full Year by a Single Firm

(a) Firm effects (connected set)
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(b) Firm effects (leave-one-out set)
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(c) Sorting (connected set)
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(d) Sorting (leave-one-out set)
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Notes: In this figure, we provide FE, FE-HO, and CRE estimates of the contribution to earnings

inequality of firm effects (Subfigures a and b) and the sorting of workers to firms (Subfigures c and

d) in Austria, Italy, and Sweden. We consider the connected (Subfigures a and c) and

leave-one-out (Subfigures b and d) sets of firms. We consider only workers employed in the firm for

the full calendar year.

A23



Figure F2: Minimum Earnings Threshold for Defining Full-time Equivalence in the
US

(a) Firm Effects: Share (%)
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(b) Sorting: Share (%)
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Notes: In this figure, we provide FE, FE-HO, and CRE estimates of the contribution to earnings

inequality of firm effects (Subfigure a) and the sorting of workers to firms (Subfigure b) in the US.

We restrict the sample to workers with at least the annual earnings (at the highest-paying

employer) indicated on the x-axis. We consider the connected set of firms for each restricted

sample.

Figure F3: Firm Effects and Sorting in the US over Mover Definitions

(a) Firm Effects
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(b) Sorting
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Notes: In this figure, we provide FE, FE-HO, and CRE estimates of the contribution to earnings

inequality of firm effects (Subfigure a) and the sorting of workers to firms (Subfigure b) in the US.

We compare estimates using the baseline definition of movers and the strict definition of movers

defined in the text.
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Figure F4: US Sample: Event Study around Moves
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Notes: In this figure, we classify firms into four equally sized groups based on the mean earnings of

stayers in the firm (with 1 and 4 being the group with the lowest and highest mean earnings,

respectively). We compute mean log-earnings for the workers that move firms during 2012-2013.

Note that the employer differs between event times 2012 and 2013, but we do not know exactly

when the change in employer occurred. To avoid concerns over workers exiting and entering

employment during these years, we do not display the transition years.
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Figure F5: Evidence on Limited Mobility Bias in the United States

(a) Firm effects (connected set)
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(b) Firm effects (leave-one-out set)
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(c) Sorting (connected set)
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(d) Sorting (leave-one-out set)
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Notes: In this figure, we consider the subset of firms in the US with at least 15 movers.
We randomly remove movers within each firm and re-estimate the variance of firm
effects and covariance between firm and worker effects using the various estimators.
For each estimator, we repeat this procedure several times then average the estimates
across repetitions. The procedure allows us to keep the connected or leave-one-out set
of firms the same and examine the bias that results from having fewer movers available
in estimation. The vertical dashed line approximates the point at which movers per
firm in this sample matches movers per firm in the full sample.
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Figure F6: Firm Effects and Sorting in the US: Short-Panel Estimation (Connected
Set)

(a) Firm Effects
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(b) Sorting
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Notes: In this figure, we provide FE, FE-HO, and CRE estimates of the contribution to earnings

inequality of firm effects (Subfigure a) and the sorting of workers to firms (Subfigure b) in the US.

We consider the connected set of firms, and compare estimates on each 2-year panel during

2010-2015 (the latter year of the 2-year panel is indicated on the x-axis).

Figure F7: Firm Size Restrictions in the US (Connected Set)

(a) Firm Effects
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(b) Sorting
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Notes: In this figure, we provide FE, FE-HO, and CRE estimates of the contribution

to earnings and wage inequality of firm effects (Subfigure a) and the sorting of workers

to firms (Subfigure b) in the US. We restrict the sample to firms with at least the

number of workers indicated on the x-axis. We consider the connected set of firms for

each restricted sample.
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Figure F8: Firm Effects and Sorting in the United States over Time

(a) Firm Effects (Connected Set)
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(b) Sorting (Connected Set)
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(c) Firm Effects (Leave-one-out Set)
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(d) Sorting (Leave-one-out Set)
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Notes: In this figure, we provide FE, FE-HO, and CRE estimates of the contribution

to earnings inequality of firm effects (Subfigure a) and the sorting of workers to firms

(Subfigure b) in the US. We consider the connected set of firms. We compare the

6-year panel during 2001-2006 to the 6-year panel during 2010-2015.
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Figure F9: Visualizing Alternative Mover Definitions for the US

Year −3 −2 −1 0 1 2
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Strict j1 j2
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Notes: In this figure, we provide a diagram to help visualize the difference between the main

definition of a mover (“Baseline”) and the mover definition that uses only intermediate years

within spells (“Strict”).

Figure F10: Norway: Annual Earnings, Daily Wages, and Hourly Wages

(a) Firm effects (connected set)
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(b) Sorting (connected set)
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(c) Firm effects (leave-one-out set)
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(d) Sorting (leave-one-out set)
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Notes: In this figure, we provide FE, FE-HO, FE-HE, and CRE estimates of the

contribution to earnings or wage inequality of firm effects (Subfigures a and c) and the

sorting of workers to firms (Subfigures b and d) in Norway. We consider the connected

set of firms (Subfigures a and b) and the leave-one-out set of firms (Subfigures c and

d) for the 6-year panel and the 3-year panel. We compare results for three outcome

measures: log annual earnings, log daily wages, and log hourly wages.

A29



Figure F11: Exact and Approximate Solutions: Firm Effects Variance (%) for the
Small US States

(a) Connected Set
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(b) Leave-one-out Set
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Notes: In this figure, we provide FE, FE-HO, and CRE estimates for the connected set (Subfigure

a) and FE, FE-HO, FE-HE, and CRE estimates for the leave-one-out set (Subfigure b) of the

contribution to earnings inequality of firm effects in the 20 smallest US states. We compare the

exact solution (x-axis) and the approximate solution (y-axis) described in the text, so that the

dashed 45-degree line represents equality between the exact and approximate solutions.

Figure F12: Number of Groups for CRE Estimates in the US (Connected Set)
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Notes: In this figure, we provide CRE estimates of the contribution to earnings inequality of firm

effects and the sorting of workers to firms in the US. We consider the connected set of firms, and

vary the number of firm groups considered in the CRE estimation procedure (indicated on the

x-axis).
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Figure F13: Firm Effects and Sorting in the US over Type of CRE Estimator (Con-
nected Set)

(a) Firm Effects
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Notes: In this figure, we provide CRE estimates of the contribution to earnings inequality of firm

effects (Subfigure a) and the sorting of workers to firms (Subfigure b) in the US. We compare the

baseline CRE estimates to the posterior estimates for a random-effects specification that does not

condition on firm groups.

Figure F14: Leave-one-out Set: Small US States

(a) Firm effects
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(b) Sorting
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Notes: In this figure, we provide FE, FE-HO, FE-HE, and CRE estimates of the

contribution to earnings inequality of firm effects (Subfigure a) and the sorting of

workers to firms (Subfigure b) in the 20 smallest US states. We consider the leave-one-

out set of firms within each state. CRE estimates are displayed on the x-axis, and the

dashed 45-degree line represents equality between CRE and the alternate estimators.

The posterior CRE estimator (CRE-P) for firm effects is also displayed (Subfigure a).
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Figure F15: Bias when using Estimates for a Subsample to Approximate the Variance
of Firm Effects in the Full Population (given π = 0.78)

(a) Between Contribution to Bias
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(b) Within Contribution to Bias
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(c) Total Bias (side view) (d) Total Bias (overhead view)

Notes: In this figure, we use equation (D11) to visualize the bias that arises from using the

variance of firm premiums estimated for a subsample of firms to approximate the variance of firm

effects in the full population. We calibrate π = 0.78, which corresponds to the 20 workers per firm

sample restriction in the US data. Subfigure (a) provides the between-firm contribution to the

bias, subfigure (b) provides the within-firm contribution to the bias, and subfigures (c-d) provide

the joint determination of the total bias by both the between-firm and within-firm components.
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Figure F16: Bias when using Estimates for a Subsample to Approximate the Variance
of Firm Effects in the Full Population (various choices of π based on panel length)

(a) Between Contribution to Bias
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(b) Within Contribution to Bias
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Notes: In this figure, we use equation (D11) to visualize the bias that arises from using the variance

of firm premiums estimated for a subsample of firms to approximate the variance of firm effects in

the full population. We compare the value of π in the US when using a 2-year panel (π = 0.47), a

3-year panel (π = 0.62), or a 6-year panel (π = 0.93). Subfigure (a) provides the between-firm

contribution to the bias and subfigure (b) provides the within-firm contribution to the bias.
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